
Extended XML Tree Pattern Matching Using
TREEMATCH Algorithm

Dr D.Suresh Babu, B.Shiva kiran

Department of Computer Science,
KITS Warangal, AP, India

Abstract: In most of the pattern matching algorithms
finding all the distinct matching’s of the query tree pattern is the
core operation of xml query evaluation. The existing algorithms
for tree pattern matching may produce large useless
intermediate results using some different notations such as wild
cards, negation function, and/or order restrictions for which
query processing gets bit complicated.
We propose a TREEMATCH algorithm to achieve a large
optimal query class using which leads to the reduction of useless
intermediate results

Index Terms—Query processing, XML/XSL/RDF, algorithms

INTRODUCTION
As business and enterprisers generate and exchange XML
data more often, there is an increasing need for efficient
processing of queries on XML data. An XML query pattern
commonly can be represented as a rooted, labeled tree (or
called twig). For example, Figure 1(a) shows an example
XPath query: A[B]=C and the corresponding XML tree
pattern. This query finds all node C that has the parent A
which has another child B. In Figure 1(b), the query answers
are nodes “C1” and “C2”.
Considered as a core operation in XML query processing. In
recent years, many methods ([9], [13], [3], [11], [4], [25])
have been proposed to match XML tree queries efficiently
particular, Khalifa et al. [1] proposed a stack-based algorithm
to match binary structural relationship including parent-child
(P-C) and ancestor-descendant (A-D) relationships. The
limitation of their method is that the size of useless
intermediate results may become very large, even if the final
results are small. Bruno et al. [3] proposed a novel holistic
twig join algorithm named TwigStack, which processes the
tree pattern holistically without decomposing it into several
small binary relationships.

EXISTING SYSTEM:-
ALL the Previous algorithms focus on XML tree pattern
queries with XML tree queries which may contain wildcards,
negation function and order restriction, all of which are
frequently used in XML query languages such as XPath and
XQuery, for which the query processing gets bit complicated.

PROPOSED SYSTEM:-
We develop theoretical framework on optimal processing of
XML tree pattern queries using TREEMATCH
ALGORITHM for notations such as Negation functions,
ordered restrictions and wild cards of three types of patterns ,

Query processing gets bit complicated using
XPATH,XQUERY languages .we develop
A little work on TREEMATCH algorithm by which we can
reduce the useless intermediate results by using different
traversal techniques and increase “optimality of algorithm
“for large optimal query class to address the problem of sub
optimality of different holistic algorithms.

MODULES
1. Matching Cross:
“Matching cross” demonstrates the intrinsic reason for the
sub-optimality of existing holistic algorithms. The purpose of
our study are (i) to provide insight into the characteristics of
the holistic algorithms, and thus promotes our understanding
about their behaviors; and (ii) to lead to novel algorithms that
can guarantee a larger optimal query class and realize better
query performance. The existing holistic algorithms consist
of two phases: (i) in the first phase, a list of path solutions is
output as intermediate path solutions and each solution
matches the individual root-to-leaf path expression; and (ii) in
the second phase, the path solutions are merged to produce
the final answers for the whole twig query. However, for
queries with parent-child (P-C) relationships, the state-of-the-
art algorithms cannot guarantee that each intermediate
solution output in the first phase is useful to merge in the
second phase. In other words, many useless intermediate
results (i.e. path solutions) may be produced in the first
phase, which is called the sub optimality of algorithms.
2. Return nodes in twig pattern queries:
In a practical application, only parts of query nodes belong to
return nodes (or called output nodes interchangeably). Take
the Path “//A[B]//C” as an example, only C element and its
sub tree are answers. The current “modus operandi” is that
they first find the query answer with the combinations of all
query nodes, and then do an appropriate projection on those
return nodes. Such a post-processing approach has an obvious
disadvantage: it outputs many matching elements of non-
return nodes that are unnecessary for the final results. Here,
we develop a new encoding method to record the mapping
relationships and avoid outputting non-return nodes.
3. Modeling of XML data and extended tree pattern
query:
An XML database D is usually modeled as a rooted, node
labeled tree, element tags and attributes are mapped to nodes
in the trees and the edges are used to represent the direct
nesting relationships. Our primary focus is on element nodes;
and it is not difficult to extend our methods to process the

D. Suresh Babu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5210 - 5211

5210

other types of nodes, including attribute and character data.
For convenience, we distinguish between query nodes and
database nodes by using the term “node” to refer to a query
node and the term “element” to refer to a data element in D.
An extended tree query Q describes a complex traversal of
the XML document and retrieves relevant tree-structured
portions of it. The nodes in Q include element tags, attributes
and character data. We use “*” to denote the wildcard, which
can match any single tree element. There are four kinds of
query edges, which are the four combinations between
(positive, negative) and (parent-child, ancestor-descendant).

Table for Number of output elements (O) andthe percentage
(P)of useful elements for TreeMatch on random data

Table of required buffered elements (Randomdata)

REFERENCES
1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D.

Srivastava. Structural joins: A primitive for efficient XML query
pattern matching. In Proc. of ICDE Conference, pages 141–152, 2002.

2. A. Berglund, S. Boag, and D. Chamberlin. XML path language (XPath)
2.0. W3C Recommendation 23 January 2007
http://www.w3.org/TR/xpath20/.

3. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: optimal
XML pattern matching. In Proc. of SIGMOD Conference, pages 310–
321, 2002.

4. C. Y. Chan, W. Fan, and Y. Zeng. Taming xpath queries by minimizing
wildcard steps. In Proceeding of VLDB, pages 156–167, 2004.

5. S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S.
Candan. Twig2stack: Bottom-up processing of generalized-tree-pattern
queries over xml document. In Proc. of VLDB Conference, pages 19–
30, 2006.

6. T. Chen, J. Lu, and T. W. Ling. On boosting holism in xml twig pattern
matching using structural indexing

0

10

20

30

40

50

60

70

80

Q1 Q2 Q3 Q4 Q5 Q6

TwigStack

TJFast

TreeMatch

D. Suresh Babu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5210 - 5211

5211

